
Harmonized solution design of data stations

We take Klepmann (2017) as our starting point, who states that “Many applications
today are data-intensive, as opposed to compute-intensive. Raw CPU power is rarely a
limiting factor for these applications—bigger problems are usually the amount of data,
the complexity of data, and the speed at which it is changing.”

Generically, we want:

Reliability Scalability Maintainability

tolerating hardware & soft/
ware vaults

Measuring load & per/
formance

Operability, simplicity &
evolvability

human error Latency percentiles,
throughput

We focus on analytical data systems, with different patterns from transactional data
systems.

0.1 Detailing the layers of a data station
TO DO: provide detailed layers, and explain how interoperability works across the layers:

• Storage layer (technology): all reference architectures stipulate use of S3/compliant
blob storage

• Data and metadata (application): resides in the data station
• We propose to move towards open table formats, that is, Apache Iceberg, whereby

storage and compute can be separated

Figure 1: Solution of a minimal lakehouse that sits at the core of a data station

1

0.2 Detailing the data conformity zone
TO DO: explain that

• data conformity zone is essentialy a lakehouse pattern

• the architecture of a lakehouse has stabilized and converged towards:

‣ Colum-oriented storage and memory layout: Apache Arrow ecosystem, including
Apache Flight

‣ Late-binding with logical data models most suited for analytics: ELT pattern with
zonal architecture
– staging zone: hard business rules (does incoming data comply to syntactic stan/

dard), change data capture
– linkage & conformity zone: concept/oriented tables, typically following a data vault

modeling principle, ascertain referential integrity across resources, with tables
per concept and linking tables. Mapping to coding systems. Entity resolution for
record linkage at the subject level

– consumption zone: convenient standardized views like an event table (patient
journey, layout for process mining) with uniformity of dimensions using a star
schema

0.3 Detailing the trains
TO DO: explain

• difference between centralized and distributed federated learning (causes lots of
confusion)

• basically Train is a generalization of all types of computes
• difference between

‣ Train for secondary use, which usually with batch/wise, less strict latency require/
ments

‣ Train for primary use, like API call and messaging, with stricter latency requirements.
This also includes deployment of AI for inference

Bibliography

2

	Detailing the layers of a data station
	Detailing the data conformity zone
	Detailing the trains
	Bibliography

